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1 Introduction

We shall first have a quick glance on the meaning of perturbative and the how topological

string theory comes from the string theory we already familiar with. The note mainly

follows Marino’s Les Houches lecture, some other references were also referred, the list of

references is at the end of the note.

1.1 perturbative and non-perturbative

In short, the concept of perturbative and non-perturbative comes from power series ex-

pansion to approach a physical observable. We already know well about how the process

of perturbation theory works in classical physics, namely the solution of some complex

mechanical systems, and one thing we have to mention is these models or systems have

some coupling constant, which should be small enough to enable the well-defining of the

theory.

What we called as a perturbative series is generally a formal series(which is written in

a series form but not guaranteed to be a convergent series)

ϕ(g) =
∑
n≥0

ang
n (1.1)
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we connect this series with an actual physical observable with asymptotic approximation

F (g) ∼ ϕ(g) (1.2)

and we should note that F(g) can be written in an explicit formation, at least for some

range of values of g, which is known as non-perturbative definition of physical observable.

Marino’s note gives an example about the perturbation theory we often use in quantum

mechanics, but I think the example below is better to show how non-perturbative and

perturbative is connected with each other.

Consider a differential equation

x2y
′
(x) = y(x) (1.3)

we can solve almost any differential equation in series formation:∑
n

nanx
n+1 =

∑
n

anx
n (1.4)

we there obtained

y(x) =
∑
n

n!xn+1 (1.5)

which is a formal series, but we can also solve this equation directly as

y(x) = Ce−1/x (1.6)

which we can recognized as the non perturbative definition of the series. Actually, the

process of obtaining this solution from the series is called resurgence and is applied to

obtain some physical observable in topological string theory.

1.2 why topological string

Topological string is a simple version of superstring theory, which is directly constructed

in algebraic level by connecting a 2d superconformal theory with 2d gravity, same like the

original string theory, topological string theory is also defined on a Riemann surface and

connect to the geometry of the target space by the classing of maps. The theory is called

topological because the 2d superconformal theory in topological string theory is obtained

to have topological invariance, the process of obtaining this topological invariance is called

topological twisting.

Topological string is originally proposed by a model that maintains the essential infor-

mation of string theory but can be easier solved, but later it is discovered that topological

string can provide information of enumerative geometry on Calabi-Yau threefolds, and they

also have close connections to quantum integrable models and precise realizations of large

N dualities.

We will not introduce topological string in a typical way, which needs many complicated

details that are not important for us. We shall review some geometry details and directly

see the topological A and B model in stringy level.
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One important insight of topological string theory is the Gromov–Witten invariants

occured in string theory. When compactifying the type IIA theory on a CY threefold,

it leads to a 4 dimensional supersymmetric theory whose Lagrangian contains moduli-

dependent couplings Fg(t), where t is the Kähler moduli of the CY manifold.When these

couplings are expanded in the large radius limit, they are of the form

Fg(t) =
∑

β∈H2(X)

Ng,βe
−β·t (1.7)

where Ng,β are the GW invariants. Topological string theory is designed to captures

precisely the information contained in these couplings. Actually, there are methods to

calculate this Fg besides the mirror symmetry method used in topological string theory,

which is mentioned in the Appendix.

2 Perturbative topological strings

2.1 target space

Our target space for following discussion is a CY threefold, it is possible for other choices

but it is not commonly chosen as a target space. As we already know , a CY threefold is a

complex, Kähler,Ricci-flat manifold of complex dimension three.We will denote this target

space as M.

Figure 1. a holomorphic map from a Riemann surface Σg into a CY M

It’s apparent that a CY threefold may not be compact, but different with when we

consider string compactification, we also allow non-compact CY threefold to be our target

space here. Actually, we will see that non-compact CY threefolds will be ver important

and may be somewhat simpler than compact ones.

The starting point to construct topological string theory is the N = 2 supersymmetric

version of the non-linear sigma model, with target space M, as we mentioned above, the

different ways of twisting this non-linear sigma model give born of two different models,

which is the A and B model. As we connect these models with geometry of target space,

A and B model depend to different geometry of the target manifold.
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Figure 2. The Hodge diamond of CY threefold

As a mathematical property, we shall not prove but use it directly. The topological A

model depends on the Kähler parameters of the target space: h1,1(M) = b2(M), and the

topological B model depends on the complex parameters of the target space: h1,2(M) =
b3
2 − 1. Actually, in mathematical language, we often denote the space described by these

parameters of the target space as Kähler (structure) moduli space and complex (structure)

moduli space. Of course, we have mirror symmetry, which is a duality between the A

model on the CY manifold M and the B model on the mirror CY M’, in a mathematical

prospective, is a duality between Kähler moduli space and complex moduli space of two

CY threefold, or the duality between symplectic geometry and algebraic geometry(complex

geometry).

I should mention that those moduli spaces is a direct result of the deformation theory,

developed in 1970s. Actually, it’s able for us to understand this in a relatively simple way,

like P.Candelas do in his famous paper.

Some notations and concepts should be clarified here:

1.We will denote the Kähler parameters and complex parameters as ti and zi respec-

tively, sometimes it is denoted as h1,1(M) and h1,2(M) dimensional vector for simplicity.The

relation between z and t is called mirror map.

2.What we can observe in topological string theory is the partition function, actually

it’s the only observable of topological string theory on a CY threefold.

3.But we use free energy, which is the logarithm of the partition function more often.

We can calculate free energy as a perturbative series over connected Riemann surfaces.

4.The contribution of a genus g Riemann surfaces to the free energy will be denoted by

Fg, and it is a function of the Kähler(respectively, complex) moduli in the A (respectively,

B) model.

F =
∑
g=0

Fgg
2g−2
s (2.1)

where variable gs is called the topological string coupling constant, is in principle a formal

variable, keeping track of the genus of the Riemann surface.However, in string theory this

constant has a physical meaning, and measures the strength of the string interaction: when

gs is very small, the contribution to the free energy is dominated by Riemann surfaces of
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low genus; as gs becomes large, the contribution of higher genus Riemann surfaces becomes

important.

2.2 The A model

To solve topological string theory perturbatively, one has to calculate all Fg, we will perform

this process in A model. As we already know in quantum field theories, instantons are the

non trivial solutions that have information of the topological information in the theory, so

what we consider in topological models are holomorphic maps that represent instantons in

the theory:

f : Σg −→ M (2.2)

let [Si] ∈ H2(M,Z), i = 1, ..., s (we denote s = b2(M)) as a basis for two-homology of M,

we can classified these maps topologically by homology class:

f∗[(Σg)] =
s∑

i=1

di[Si] ∈ H2(M,Z) (2.3)

where di are integers called the degrees of the map, we often write as a s dimensional

vector d⃗, and the counting of instantons is roughly defined as Gromov-Witten invariants

N d⃗
g (actually the precise definition of GW invariants is complicated, but we can roughly

think that GW invariants are related with numbers of such maps(despite that GW in-

variants is a rational number, rather than a integer)). It may be a fortune for us as it’s

almost impossible to calculate GW invariants using it’s formal definition, for its definition

is ver complicated. But we will see GW invariants occur in A model free energy, actually,

P.Candelas used mirror symmetry to calculate GW invariants by calculating the B model.

The genus g free energies can be computed as an expansion near the so-called large

radius point(t → ∞), and they are given by formal power series in e−ti , also additional

contributions as polynomials in ti.

F0(⃗t) =
1

6

s∑
i,j,k=1

ai,j,ktitjtk +
∑
d⃗

N
0,d⃗

e−d⃗·⃗t (2.4)

F1(⃗t) =

s∑
i=1

biti +
∑
d⃗

N
1,d⃗

e−d⃗·⃗t (2.5)

Fg (⃗t) = cgχ+
∑
d⃗

N
g,d⃗

e−d⃗·⃗t (2.6)

whichaijk,bi are obtained by the geometry of M, and cg is a value depend merely on g.

cg =
(−1)g−1B2gB2g−2

4g(2g − 2)(2g − 2)!
(2.7)

aijk = −
∫
M

Im(J )i ∧ Im(J )j ∧ Im(J )k (2.8)

bi =
1

24

∫
M

c2(M) ∧ Im(J )i (2.9)
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where J is the complexified Kähler form, and aijk is called Yukawa coupling for historical

reasons.

Actually we can recognize this form of the free energy as the definition of the free

energy, although the original definition is by doing a integral on the moduli space and

connecting gravity and topological theories.

The explicit form of free energy is actually a hard question in the history of topological

strings, as a brief introduction, I can’t provide a detailed explanation, but in short, we can

work out the free energy in the following way: as the Kähler moduli is complexified, we

have a non-holomorphic free energy that depends both t and t̄, and this non-holomorphic

free energy has a recursion relation called the holomorphic anomaly equation:

∂̄k̄Fg =
1

2
C̄ij

k̄
(DiDjFg−1 +

g−1∑
r=1

DiFrDjFg−r) (2.10)

which we can solved for some simple models and obtain F(t, t̄), then let t → ∞ to get the

holomorphic free energy.

As the total free energy is composed by free energy of different genus

F (⃗t, gs) =
∑
g≥0

g2g−2
s Fg (⃗t) (2.11)

therefore

F (⃗t, gs) = F (p)(⃗t, gs) +
∑
g≥0

∑
d⃗

N
g,d⃗

e−d⃗·⃗tg2g−2
s (2.12)

where

F (p)(⃗t, gs) =
1

6g2s

s∑
i,j,k=1

aijktitjtk +
s∑

i=1

biti + χ
∑
g≥2

cgg
2g−2
s (2.13)

However, strong evidences are found that imply the total free energy diverges because

Fg ∼ (2g)! (2.14)

In quantum field theory one typically distinguishes between two different sources for the

factorial growth of perturbation theory. The first source is due to the growth of Feynman

diagrams and is related to instantons. The second source is due to the integration over

momenta in some special diagrams, and the corresponding Borel singularities are called

“renormalons.” In the case of string theory this distinction becomes more subtle. Since

there is only one diagram at each genus, we could say that the factorial growth of string

theory is due to integration over moduli, and therefore is of the renormalon type.

2.3 The Gopakumar-Vafa representation

When Gopakumar and Vafa noticed that the definition of free energy is a double summa-

tion, they realized that it can be resumed to obtain a new invariant which has a geometrical

meaning, and this is the Gopakumar-Vafa invariants.
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FGV (⃗t, gs) =
∑
g≥0

∑
d⃗

∞∑
w=1

1

w
nd⃗
g(2sin

wgs
2

)2g−2e−wd⃗·⃗t (2.15)

It was later found that GV invariants can be interpreted as Euler characteristics of the

moduli spaces of D2 branes in the target CY manifold, and because of this, GV invariants

are integer numbers. One important property of GV invariants is that for a given degree

d⃗, there is a maximal genus gmax(d⃗) such nd⃗
g = 0 for all g > gmax(d⃗).Also, GV invariants

sometimes have some recursion relation for simple models. Actually, Gopakumar and Vafa

have developed some formula for determining GV invariants directly for simple models like

K3× T 2.

From a direct series expansion, we can see that if one knows the GW invariants, one

can determine uniquely the GV invariants. In that sense, the two sets of invariants contain

the same information, and thus there exist direct mathematical constructions of the GV

invariants as well.

Another fact of the resumation is about the dependence of gs, for

Fm⃗(gs) =
∑
g≥0

∑
m⃗=d⃗w

1

w
nd⃗
g(2sin

wgs
2

)2g−2 (2.16)

It is unusual for any rational gs, there is a minimum degree m⃗min such that infinitely many

coefficients Fm⃗(gs) with m⃗ > m⃗min are singular at that rational value.As a consequence,

given any real value of gs,rational or not, there is a degree starting from which infinitely

many coefficients Fm⃗(gs) can be made arbitrarily large.

A method named topological vertex was introduced to calculated these Fm(gs) for

simple models quickly, it is not in Marino’s note, so I put this content in appendix.

2.4 An example: the resolved conifold

The simplest example of a topological string theory is the one defined on the non-compact

CY manifold know as the resolved conifold, which is a plane bundle over the two sphere:

X = O(−1)⊕O(−1) −→ P1 (2.17)

this may be not a familiar notation for physicist, so we may first have a brief review on

conifolds. Actually, a great literature on conifolds is by P.Candelas at 1990, here we also

refer to that one.One important fact is a resolved conifold only depends on one parameter,

which gives convenience for our computation.

For a conifold
4∑

A=1

(wA)2 = 0 (2.18)

the deformation
4∑

A=1

(wA)2 = ϵ2 (2.19)
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results a deformed conifold, and when writing the conifold as XY −UV = 0, the resolution(
X U

V Y

)(
λ1

λ2

)
= 0

results a resolved conifold.

Figure 3. deformed and resolved conifold

in the standard process, we consider the tangent bundle of the resolved conifold and

it is composed by tangent and normal bundles of the P1 manifold.

T (X) = TP1 ⊕NP1 (2.20)

considering that it can be calculated that c1(TP1) = 2 and c1(TX) = 0, followed by a

theorem by Grothendieck stating that any holomorphic bundle over a P1 decomposed as a

direct sum of line bundles, we have

NP1 = O(−1)⊕O(−1) (2.21)

From a complicated calculation in https://arxiv.org/pdf/math/9810173, it is proved that

there is only one non-zero GV invariant n1
0 = 1, inserting this into the definition of topo-

logical string, we obtain

FGV (t; gs) =

∞∑
w=1

1

w

e−wt

4sin2(wgs
2 )

(2.22)

easily we obtain

F0(t) = Li3(e
−t) (2.23)

F1(t) =
1

12
Li1(e

−t) (2.24)

Fg(t) =
(−1)g−1B2g

2g(2g − 2)!
Li3−2g(e

−t), g ≥ 2 (2.25)
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by using the formula

Li3−2g(e
−t) = Γ(2g − 2)

∑
k∈Z

1

(2πki+ t)2g−2
(2.26)

and the large order behavior of Bernoulli number

B2g =
2(−1)g+1(2g)!ζ(2g)

(2π)2g
∼ 2(−1)g+1(2g)!

(2π)2g
(2.27)

we can see that Fg(t) grows doubly-factorially with the genus.

For a special case, a even more simple model is the topological string is near the

conifold point defined as t → 0, which we obtained(where λ = it)

F0(λ) =
λ2

2
(ln(λ)− 3

2
) + ... (2.28)

F1(λ) = − 1

12
ln(λ) + ... (2.29)

Fg(λ) =
B2g

2g(2g − 2)
λ2−2g + ... (2.30)

Conifold point is the point where P1 shrinks to zero size and the free energy is singular,

actually these points arise generically in the moduli space of CY manifolds, and they will

play an important role in what follows.

2.5 The B model

The problem of calculating the free energies in the B model is very different, since the

twisted sigma model localizes to constant maps, so the calculation is in a sense “classical”.

In the case of genus zero, the problem is completely solved by calculating the periods of

the holomorphic 3-form Ω on the mirror CY manifold. Actually, this classicalness enables

us to use mirror symmetry to get some thing we expect.

To do the process in genus zero level, one choose a symplectic basis of three-cycles,

AI , BI I = 0, 1, ..., (h2,1)∗ (2.31)

also these cycles have to satisfy a orthogonal relation〈
AI , AJ

〉
=
〈
BI , BJ

〉
= 0 (2.32)〈

AI , BJ

〉
= −

〈
BI , A

J
〉
= δIJ (2.33)

Integration of Ω over these cycles gives the A and B peroids

XI =

∫
AI

Ω, FI =

∫
BI

Ω (2.34)

these periods can define the projective prepotential in a rather indirect way

FI =
∂F0

∂XI
(2.35)
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and we also define the coordinate on the complex moduli space, which is some times called

the homogeneous coordinate or flat coordinate

ta =
Xa

X0
, a = 1, ..., (h2,1)∗ (2.36)

and thus we get the genus zero free energy from the projective prepotential and the flat

coordinates, which is sometimes called the prepotential

F0(X
I) = (X0)2F0(⃗t) (2.37)

it is not quite a surprise that the prepotential is a global function on the complex moduli

space. How is this connected to A model? Actually, from some appropriate choice of the

basis of three-cycles, and considering

(h2,1)∗ = s (2.38)

we can regard the flat coordinates obtained in this way as the Kähle parameters of the

A model, thus the easily obtained prepotential is equivalent to the A model genus zero

free energy which is defined with GW invariants which we are curious about. This is the

classical setting of mirror symmetry practice which is finished on quintic and some simple

but non-trivial models.

One important case of CY manifolds is toric CY manifolds and the mirror symmetry on

these CY manifolds are usually called local mirror symmetry, their mirror may be written

in a form as

uv = P (ex, ey) (2.39)

and P (ex, ey) is a polynomial in the exponentiated variables x, y. Also, this mirror map

can be viewed as a Riemann surface described by the polynomial

P (ex, ey) = 0 (2.40)

It is proved that this Riemann surface actually inherited some properties of the toric CY

threefold, like the nowher vanishing 3form Ω is expressed as a differential on the curve

λ = y(x)dx (2.41)

to follow the same procedure, we can also find a basis of one cycle on the curve

Aa,Ba, a = 1, ..., gΣ (2.42)

where gΣ represents the genus of the curve, it is natural that independent one cycle depends

on the number of genus of the curve.And we can get the flat coordinates directly, because

one can always set X0 = 1 at this case

ta =

∮
Aa

λ,
∂F0

∂ta
=

∮
Ba

λ, a = 1, ..., gΣ (2.43)
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we need to emphasize that in general s ≥ gΣ is true, so additional s− gΣ parameters have

to be obtained by considering in additional residues of poles at infinity of the curve, these

parameters are called mass parameters.

Another important consequence of using the B model is that there is in fact an infinite

family of flat coordinates and genus zero free energies, depending on the choice of a basis

of three cycles. This maybe a fact that is quite easy to find, but the thing matters it that

different choices can let different flat coordinates be related by symplectic transformations.

For a example of local case and gΣ = 1,(
∂t̃F̃0

t̃

)
=

(
α β

γ δ

)(
∂tF0

t

)
+

(
a

b

)

and

αδ − βγ = 1 (2.44)

we can immediately get

F̃0(t̃) = F0(t)− S(t, t̃) (2.45)

and S(t, t̃) can be written in a formal form of a order 2 polynomial without constants.But

as we have constrains of S(t, t̃)

∂F0

∂t
=

∂S

∂t

∂F̃0

∂t̃
= −∂S

∂t̃
(2.46)

so

S(t, t̃) = − δ

2γ
t2 +

1

γ
tt̃− α

2γ
t̃2 − α

γ
t+ (

α

γ
a− b)t̃ (2.47)

we called the different choice of three cycles as frames, and these frames are always related

by this type of transformations, so they contain the same information, we can choose the

most convenient frame to simplifies our calculation.One important frame is the conifold

frame which simplified our moduli space to one parameter that is at the surrounding of

the conifold point, this frame is rather general because many moduli space of CY manifold

is conifold.

For the local case, there is a theorem that allows us to get higher genus free energies,

which is previously called the BKMP conjecture

exp(F̃ (t̃; gs)) =

∫
exp(F (t; gs)−

1

g2s
S(t, t̃))dt (2.48)

2.6 A more complicated example: local P2

We need to look at a rich example to have a better understanding of the B model approach

to topological string theory. The mirror curve of P2 model is given by

ex + ey + e−x−y + κ = 0 (2.49)

we define

z =
1

κ3
(2.50)
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and use the transformation of

ex = −κ

2
+

bY − a/2

X + c
(2.51)

ey =
a

X + c
(2.52)

we can get a elliptic curve in Weierstrass form, using the definition of the discriminant of

elliptic curve, we obtained

∆(κ) =
1 + 27κ3

κ
(2.53)

therefore we get the location of the three special points in the curve, we change the dis-

criminant substantially, namely, we have a large radius point κ → ∞, an orbifold point

κ = 0, and the conifold point κ = −1
3 , where the discriminant vanishes.

Figure 4. the moduli space of local P2 with three special points

the detailed discussion of these moduli spaces can be found in Paul.Aspinwall’s lecture

in 1994.Back to the B model itself, the most convenient way of calculating B model periods

which is early proved in the late 80s is to calculate the Picard-Fuchs equation ,which is

(θ3 − 3z(3θ + 2)(3θ + 1)θ)Π = 0 (2.54)

and

θ = z
d

dz
(2.55)

for the local P2 model. The equation has three solutions, and it is obvious that one of them

is trivial one, which we will neglect, the other two is denoted as ϖ1(z) and ϖ2(z). Which
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can be written as a complicated composition of generalized hypergeometric function and

logarithm. Thus we have

t = −ϖ1(z) ∂tF0(t) =
ϖ2(z)

6
(2.56)

the minus sign here is just a convention. From this we can get that

F0(t) =
t3

18
+ 3e−t− 45

8
e−2t +

244

9
e−3t − 12333

64
e−4t + .... (2.57)

we should find that for the frame chosen above, when z → 0,we have e−t → 0 which

is the large radius limit.So we can also try to choose a conifold frame to get another

representation. The period is

λ(z) =
1

4π
(ln2(−z) + 2lnzϖ̃1(z) + ϖ̃2(z)) (2.58)

where ϖ̃1(z) and ϖ̃2(z) are generalized hypergeometric functions.The conifold frame is

defined as
∂F c

0

∂λ
= −2π

3
t± 2π2i

3
(2.59)

λ =
3

2π
∂tF0 ±

i

2π
t− π

2
(2.60)

where we can obtain

F c
0 (λ) =

1

2
λ2(ln(

λ

35/2
)− 3

2
)− λ3

36
√
3
+

λ4

7776
+ ... (2.61)

which satisfies the general behavior of genus zero free energy, also higher genus can be

calculated in other ways and is also verified to be satisfies the general behavior of higher

genus free energy.

3 Appendix

3.1 topological strings on open surfaces

The theory of topological strings can be (at least formally) extended to the open case.The

natural starting point is to consider maps from a Riemann surface Σg,h of genus g with h

holes. Actually, we can find the discussion of this model in one of Witten’s paper at 1995.

When we consider

f : Σg,h −→ X (3.1)

It turns out that the relevant boundary conditions are Dirichlet and given by Lagrangian

submanifolds of the Calabi–Yau X, which is a mathematical result.Recall that a Lagrangian

submanifold L is a cycle on which the Kähle form vanishes:

J |L= 0 (3.2)

If we denote the boundaries of Σg,h as Ci, i = 1, ..., h, and pick a Lagrangian submanifoldL,
we should consider holomorphic maps such that

f(Ci) ⊂ L (3.3)
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Once boundary conditions have been specified, we look at holomorphic maps from open

Riemann surfaces of genus g and with h holes to the Calabi Yau X, with Dirichlet boundary

conditions specified by L. These holomorphic maps are called open string instantons, and

can also be classified topologically.

The topological sector of an open string instanton is given by two different kinds of

data: the boundary part and the bulk part. For the bulk part, the topological sector is

labelled by relative homology classes, since we are requir- ing the boundaries of f∗[Σg,h] to

end on L. We set

f∗[Σg,h] = β ∈ H2(X,L) (3.4)

To specify the topological sector of the boundary, we will assume that b1(L) = 1 so that

the first order homology of the Lagrangian submanifold is generated by a non-trivial one

cycle which we will denote as γ,we then have

f∗(Ci) = wiγi, wi ∈ Z, i = 1, .., h (3.5)

we can think wi as winding number associated to the map f restricted to Ci,then we define

the open string free energy as

Fw,g(t) =
∑
β

Fw,g,βe
−β·t (3.6)

and Fw,g,β is called open Gromov Witten invariants. The total free energy of open topo-

logical string theory is

F (V ) =

∞∑
g=0

∞∑
h=1

∑
w1,...,wh

ih

h!
g2g−2+h
s Fw,g(t)TrV

w1 ...T rV wh (3.7)

where V is a Hermitian M ×M matrix, the factor of ih is introduced for convenience and

h! is a symmetry factor which takes into account that the holes are indistinguishable. If

winding numbers wi are all positive, the upper formula can be formally written in a simpler

form

F (V ) =
∑
R

FR(gs; t)TrRV (3.8)

where R is representation.We have also assumed that the boundary conditions are specified

by a single Lagrangian submanifold with a single non trivial one cycle. When there are

more one-cycles in the geometry, say N , providing possible boundary conditions for the

open strings, the above formalism has to be generalized in an obvious way: one introduce

different matrix Vα, α = 1, ..., N , then the total partition function has the formal form of

Z(Vi) =
∑

R1,...,RN

ZR1...RN
(gs; t)

N∏
α1

TrRαVα (3.9)

One fact of open string amplitudes is the framing ambiguity which is discovered by Aganagic

et al. in 2002. When a vector f = (p, q) is attached to the edge where the submanifold is

located and define the symplectic product

v ∧ w = v1w2 − v2w1 (3.10)
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If the original La- grangian submanifold is located at an edge v the choice of framing has

to satisfy

f ∧ v = 1 (3.11)

it is clear that f − nv satisfies the condition for any integer n, and the coefficients ZR

appeared in the total partition function changes as

ZR → (−1)nl(R)qnκR/2ZR (3.12)

where l(R) is defined as the total number of boxes in the young tableaux of the represen-

tation, and

κR = l(R) +
∑
i

(l2i − 2ili) (3.13)

certainly this can be generalized to

ZR1...RN
→ (−1)

∑N
α=1 nαl(Rα)q

∑N
α=1 nακRα/2ZR1...RN

(3.14)

3.2 a very short introduction of topological vertex

As a result in toric geometry, we construct one Lagrangian submanifold in each of the

vertices of the toric diagram of C3,since each of these submanifolds has the topology of

C× S1.The total open string partition function in this model will be given by

Z(Vi) =
∑

R1,R2,R3

CR1,R2,R3

3∏
i=1

TrRiVi (3.15)

and the amplitude CR1,R2,R3 which is a function of the string coupling constant is called the

topological vertex. We then introduce some notion to give the explicit expression for the

topological vertex. It is a widely known result that Chern-Simons theory on S3 is dual to

topological string on simple models, such like resolved conifolds. It turns out that the open

topological string amplitude for the three Lagrangian submanifolds in C3 can be written

by using only the Chern– Simons invariant of the Hopf link, which we denote as WR1R2

but we won’t give a precise definition here considering its complexity. And the limit

WR1R2 = lim
t→∞

e−
l(R1)+l(R2)

2 WR1R2 (3.16)

is used to obtain topological vertexes.

CR1R2R3 = q
κR2

+κR3
2

∑
Q1,Q3,Q

NR1
QQ1

N
Rt

3
QQ3

WRt
2Q1

WR2Q3

WR20
(3.17)

where NR
R1R2

is the Littlewood–Richardson coefficient which gives the multiplicity of R in

the tensor product R1 ⊗R2. Another form of get the explicit form is by introducing Schur

polynomials.

Again, we look at the resolved conifold as an example of topological vertex, when using

topological vertex, we get

ZP1 =
∑
R

C00Rt(−1)l(R)e−l(R)tCR00 (3.18)
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where CR00 is a Schur polynomial, explicitly

ZP1 = exp(−
∞∑
d=1

e−dt

d(qd/2 − q−d/2)2
) (3.19)

which can be shown to be equivalent to

F (gs; t) =
∞∑
d=1

1

d(2sindg2
2 )2

Qd (3.20)

which we are familiar with.

3.3 formal definition and a very short introduction on GW invariants

In order to define Gromov Witten invariants, the starting point is the moduli space of

possible metrics (or equivalently, complex structures) on a Riemann surface with punctures,

which is the famous Deligne-Mumford space M̄g,n of n-pointed stable curves.Let X be a

Kähler manifold.The relevant moduli space in Gromov–Witten theory is denoted by

M̄g,n(X,β) (3.21)

where β is a two cycle.Very roughly, a point in M̄g,n(X,β) can be written as

(f,Σ, p1, ..., pn) (3.22)

which is a combination of a point in a Riemann surface with n punctures together with a

choice of complex structure on Σg and a holomorphic map with respect to this choice of

complex structure and such that f∗[Σg] = β. The dimension of this space is

(1− g)(d− 3) + n+

∫
Σg

f∗(c1(X)) (3.23)

and we also have two maps

π1 : M̄g,n(X,β) → Xn : (f,Σ, p1, ..., pn) → (f(p1), ..., f(pn)) (3.24)

π2 : M̄g,n(X,β) → M̄g,n : (f,Σ, p1, ..., pn) → (Σ, p1, ..., pn) (3.25)

for cohomology classes ϕ1, ..., ϕn in H∗(X). If we pull back their tensor product to

H∗(M̄g,n(X,β)) by π1, we get a differential form on the moduli space of maps that we

can integrate

Ig,n,β(ϕ1, ..., ϕn) =

∫
M̄g,n(X,β)

π∗
1(ϕ1 ⊗ ...⊗ ϕn) (3.26)

which is the GW invariants. GW invariants vanishes unless the degree of the form equals

the dimension of the moduli space. Therefore, we have the following constraint:

1

2

n∑
i=1

deg(ϕi) = (1− g)(d− 3) + n+

∫
Σg

f∗(c1(X)) (3.27)
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for CY threefolds, the condition is always satisfied if ϕi have degree 2.

Restricting ourselves to Calabi–Yau threefolds, we have the following mathematical

approaches to the computation of Gromov–Witten invariants:

1.Localization. This was first proposed by Kontsevich, and requires torus actions in

the Calabi–Yau in order to work. Localization provides a priori a complete solution of the

theory on toric (hence non-compact) Calabi– Yau manifolds, and reduces the computation

of Gromov–Witten invariants to the calculation of Hodge integrals in Deligne–Mumford

moduli space. Localization techniques make also possible to solve the theory at genus zero

on a wide class of compact manifolds, see for example Cox and Katz (1999) for a review.

2.Deformation and topological approach. This has been developed more re- cently

and relies on relative Gromov–Witten invariants. It provides a cut-and-paste approach to

the calculation of the invariants and seems to be the most powerful approach to higher

genus Gromov–Witten invariants in the compact case.

3.D − brane moduli spaces. Gromov–Witten invariants can be reformulated in terms

of the so-called Gopakumar–Vafa invariants (see Hori et al. (2003) for a summary of these).

Heuristic techniques to compute them in terms of Euler characteristics of moduli space

of embedded surfaces, and one can recover to a large extent the original information of

Gromov–Witten theory. The equivalence between these two invariants remains however

conjectural, and a general, rigorous definition of the Gopakumar–Vafa invariants in terms

of appropriate moduli spaces is still not known. There is another set of invariants, the so-

called Donaldson–Thomas invariants, that are also related to D-brane moduli spaces, which

can be rigorously defined and have been conjectured to be equivalent to Gromov–Witten

invariants by Maulik, Nekrasov, Okounkov and Pandharipande (2003).

3.4 other method of obtaining Fg(t)

One classical method is using large N dualities, large N dualities lead to a computa-

tion of the Fg(t) couplings in terms of correlation functions and partition functions in

Chern–Simons theory. Although this was formulated originally only for the resolved coni-

fold, one ends up with a general theory which is the theory of the topological vertex,

introduced in Aganagic et al. (2005) it also leads to a complete solution on toric Cal-

abi–Yau manifolds. The theory of the topological vertex is closely related to localization

and to Hodge integrals, and it can be formulated in a rigorous mathematical way (see Li

et al. 2004).

Another more physical way is by using heterotic duality. When the Calabi–Yau man-

ifold has the structure of a K3 fibration, type IIA theory often has a heterotic dual, and

the evaluation of Fg(t) restricted to the K3 fiber can be reduced to a one loop integral

in heterotic string theory. This leads to explicit, conjectural formulae for Gromov Witten

invariants in terms of modular forms.
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